First you calculate the pOH of the solution:
pH+ pOH = 14
3.25 + pOH = 14
pOH = 14 - 3.25
pOH = 10.75
<span>Concentration of [OH]</span>⁻<span> in solution:
</span>
[ OH⁻ ] =

[ OH⁻ ] = 10^ - 10.75
[OH⁻] = 1.778 x 10⁻¹¹ Mhope this helps !
A forest would have have the most fertile soil
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Calcium will form ions with a charge of +2
Elements were grouped on their properties and behaviors, so hydrogen resides with the alkali metals in group 1 (1A) because it has only 1 valence electron, like the metals in that group.