1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
15

−10x − 5y ≥ 15 x + y ≤ −1 what are the quadrants containing a solution to the above system of linear inequalities.

Mathematics
1 answer:
Paraphin [41]3 years ago
5 0
Let's convert these inequalities to Slope Intercept Form so that we can graph them easily.

<span>−10x − 5y ≥ 15
Add 10x to both sides.
-5y </span>≥ 10x + 15
Divide both sides by -5 and flip the inequality sign.
y <span>≤ -2x - 3

</span><span>x + y ≤ − 1
Subtract x from both sides.
</span><span>y ≤ -x − 1

When graphed, the solutions lay in Quadrants II, III, and IV. You can see this in the picture I've included.</span>

You might be interested in
What is PIE multiplied by PIE?
oksian1 [2.3K]
Pie equal 3.14. So therefore 3.14 x 3.14= 9.8596
6 0
3 years ago
Read 2 more answers
¿Qué interés produce s/ 72,000 al 5% anual en 1 año, 1 mes, 10 días?
PtichkaEL [24]

Answer: 3,988.8

Usaremos la fómula: I = C * i * n

I = 72 000 * 0.05 * (1 año + 1 mes + 10 día)

I = 72 000 * 0.05 * (1 + 0.08 + 0.0028)

I = 72 000 * 0.05 * 1.108

3,988.8

Step-by-step explanation:

Podemos obtener el interés que produce un capital con la siguiente fórmula:  

I = C * i * n

Ejemplo: Si queremos calcular el interés simple que produce un capital de 1.000.000 pesos invertido durante 5 años a una tasa del 8% anual. El interés simple se calculará de la siguiente forma:

I = 1.000.000 * 0,08 * 5 = 400.000

Si queremos calcular el mismo interés durante un periodo menor a un año (60 días), se calculará de la siguiente forma:

Periodo: 60 días = 60/360 = 0,16            

I = 1.000.000 * 0,08 * 60/360 =  13.333

Espero te ayude :3

3 0
3 years ago
Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
aliya0001 [1]

The Lagrangian

L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(x^4+y^4+z^4-13)

has critical points where the first derivatives vanish:

L_x=2x+4\lambda x^3=2x(1+2\lambda x^2)=0\implies x=0\text{ or }x^2=-\dfrac1{2\lambda}

L_y=2y+4\lambda y^3=2y(1+2\lambda y^2)=0\implies y=0\text{ or }y^2=-\dfrac1{2\lambda}

L_z=2z+4\lambda z^3=2z(1+2\lambda z^2)=0\implies z=0\text{ or }z^2=-\dfrac1{2\lambda}

L_\lambda=x^4+y^4+z^4-13=0

We can't have x=y=z=0, since that contradicts the last condition.

(0 critical points)

If two of them are zero, then the remaining variable has two possible values of \pm\sqrt[4]{13}. For example, if y=z=0, then x^4=13\implies x=\pm\sqrt[4]{13}.

(6 critical points; 2 for each non-zero variable)

If only one of them is zero, then the squares of the remaining variables are equal and we would find \lambda=-\frac1{\sqrt{26}} (taking the negative root because x^2,y^2,z^2 must be non-negative), and we can immediately find the critical points from there. For example, if z=0, then x^4+y^4=13. If both x,y are non-zero, then x^2=y^2=-\frac1{2\lambda}, and

xL_x+yL_y=2(x^2+y^2)+52\lambda=-\dfrac2\lambda+52\lambda=0\implies\lambda=\pm\dfrac1{\sqrt{26}}

\implies x^2=\sqrt{\dfrac{13}2}\implies x=\pm\sqrt[4]{\dfrac{13}2}

and for either choice of x, we can independently choose from y=\pm\sqrt[4]{\frac{13}2}.

(12 critical points; 3 ways of picking one variable to be zero, and 4 choices of sign for the remaining two variables)

If none of the variables are zero, then x^2=y^2=z^2=-\frac1{2\lambda}. We have

xL_x+yL_y+zL_z=2(x^2+y^2+z^2)+52\lambda=-\dfrac3\lambda+52\lambda=0\implies\lambda=\pm\dfrac{\sqrt{39}}{26}

\implies x^2=\sqrt{\dfrac{13}3}\implies x=\pm\sqrt[4]{\dfrac{13}3}

and similary y,z have the same solutions whose signs can be picked independently of one another.

(8 critical points)

Now evaluate f at each critical point; you should end up with a maximum value of \sqrt{39} and a minimum value of \sqrt{13} (both occurring at various critical points).

Here's a comprehensive list of all the critical points we found:

(\sqrt[4]{13},0,0)

(-\sqrt[4]{13},0,0)

(0,\sqrt[4]{13},0)

(0,-\sqrt[4]{13},0)

(0,0,\sqrt[4]{13})

(0,0,-\sqrt[4]{13})

\left(\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

5 0
3 years ago
Simplify the Expression
nlexa [21]

Answer:

125a^{3}b^{2}

Step-by-step explanation:

6 0
3 years ago
HELP!!!!!!!!! ASP
Anarel [89]

Answer:

D

Step-by-step explanation:

What you need to do is find the slope of both lines. Perpendicular lines are the negative inverse of each other. The slope of the lie between points R and F is  (2-4)/(1+9)=-1/5. Now you need to find the line where the slop is 5. If you look at D, the slope of the line those points lie on is (25-15)/(4-2)=5 which makes D the answer.

3 0
3 years ago
Read 2 more answers
Other questions:
  • C-4d-1 2c-8d=2 solve
    9·1 answer
  • If Amelia would like to double her money in twelve years, how much interest does she need to earn? 6 percent 12 percent 10 perce
    6·1 answer
  • How do I right there fraction 4/12 in simplistic form??
    10·1 answer
  • the ratio of blue circles to total circles is 4 to 5. there are more than 10 circles. describe what this group would look like.
    8·1 answer
  • Plz help me answer this
    9·1 answer
  • Which of these is an example of driving at an average rate of 20 miles per hour?
    9·1 answer
  • URGENT!!! my question is in the picture brainliest, extra points, i have other questions on my page please answer those too ​
    14·1 answer
  • NO TROLL I WILL REPORT PLS ANSWER I WILL GIVE BRAINLIEST
    12·1 answer
  • He expression 5x − 3(2x − 4) is equivalent to the expression 12 − x.<br><br> True<br> False
    7·1 answer
  • PLEASE HELP ME!!!!! GIVING (17 POINTS)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!