Answer:
Cellular respiration.
Explanation:
Through the process of cellular respiration, the energy in food is converted into energy that can be used by the body's cells. During cellular respiration, glucose and oxygen are converted into carbon dioxide and water, and the energy is transferred to ATP.
W=F*d
W= 500 J
F = 250 N
500 J = 250 N * d
d= 500J/250 N = 2 J/N = 2(N*m)/N = 2 m
Answer is 2 m.
9.184 liters CH2O at STP
I think this is correct. Good luck
1 mole ----------- 6.02 x 10²³ atoms
? mole ---------- 24.08 x 10²³ atoms
moles B = ( 24.08 x 10²³) x 1 / 6.02 x 10²³
moles B = 24.08 x 10²³ / 6.02 x 10²³
= 4 moles
Answer B
hope this helps!
Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates