Answer:
Answer:
Explanation:
Given that
K=8.98755×10^9Nm²/C²
Q=0.00011C
Radius of the sphere = 5.2m
g=9.8m/s²
1. The electric field inside a conductor is zero
εΦ=qenc
εEA=qenc
net charge qenc is the algebraic sum of all the enclosed positive and negative charges, and it can be positive, negative, or zero
This surface encloses no charge, and thus qenc=0. Gauss’ law.
Since it is inside the conductor
E=0N/C
2. Since the entire charge us inside the surface, then the electric field at a distance r (5.2m) away form the surface is given as
F=kq1/r²
F=kQ/r²
F=8.98755E9×0.00011/5.2²
F=36561.78N/C
The electric field at the surface of the conductor is 36561N/C
Since the charge is positive the it is outward field
3. Given that a test charge is at 12.6m away,
Then Electric field is given as,
E=kQ/r²
E=8.98755E9 ×0.00011/12.6²
E=6227.34N/C
Recall the wave equation,

where c is the speed of the wave (m/s), f is the frequency of the wave (Hz) and λ is the wavelength of the wave (m).

so
Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.
Direction!
Velocity is a vector quantity and speed is a scalar quantity. Vector quantities includes both magnitude and direction, while scalar quantities only have magnitude. :)