Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.
Answer:
The magnitude of the electric field be 171.76 N/C so that the electron misses the plate.
Explanation:
As data is incomplete here, so by seeing the complete question from the search the data is
vx_0=1.1 x 10^6
ax=0 As acceleration is zero in the horizontal axis so
Equation of motion in horizontal direction is given as


Now for the vertical distance
vy_o=0
than the equation of motion becomes

Now using this acceleration the value of electric field is calculated as

Here a is calculated above, m is the mass of electron while q is the charge of electron, substituting values in the equation

So the magnitude of the electric field be 171.76 N/C so that the electron misses the plate.
<h2>Hello</h2>
The answer is:

<h2>Why?</h2>
Momentum is the quantity of movement of an object, and it's calculated using the mass and the velocity of the object. Momentum is expressed by the following formula:

Where:

So, calculating we have:

Remember,

Have a nice day!
This is a concave mirror you're talking about, so all of the points are going to converge to a single focal point. Therefore the answer would be that it bounces back toward a single spot
Answer:
My best guess would be B due to the fact of friction in a simple machine