A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12t² + 35 t + 1
Answer:
Velocity = 131 m/s
Speed = 131 m/s
Explanation:
Equation of motion, s = f(t) = 12t² + 35 t + 1
To get velocity of the particle, let us find the first derivative of s
v (t) = ds/dt = 24t + 35
At t = 4
v(4) = 24(4) + 35
v(4) = 131 m/s
Speed is the magnitude of velocity. Since the velocity is already positive, speed is also 131 m/s
Answer:
Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth.
Answer:
the velocity of the car is 0.875 m/s
Explanation:

therefore the V of car is 0.875 m
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
Answer: work must be done on the system (Option A)
Explanation:
The second law of thermodynamics is the fundamental law of nature; it states that energy can be transferred from cold objects to hot objects only, if work is done on the system. If energy is added to the system then as a result the thermal energy would increase. Second law of thermodynamics is used to determine whether a process is spontaneous or not. Moreover,the second law of thermodynamics is also used in refrigerators.