Answer:
Substances 1 and 2
Explanation:
an element only has 1 kind of atoms :3
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Answer:
The answer to your question is: Initial temperature of copper = 67.1°C
Explanation:
Data
mass Copper = 248 g
volume Water = 390 ml
T1 water = 22.6°C
T2 = 39.9°C
T1 copper = ?
Specific heat water = 1 cal/g°C
Specific heat copper = 0.092 cal/g°C
Formula copper water
Heat is negative for copper because it releases heat
- mCp(T2 - T1) = mCp(T2 - T1)
- (248)(39.9 - T1) = 390 (1)((39.9 - 22.6) Substitution
-9895.2 + 248T1 = 390(17.3) Simplification
-9895.2 + 248T1 = 6747
248 T1 = 6747 + 9895.2
248 T1 = 16642.2
T1 = 16642.2 / 248
T1 = 67.1 °C Result
Heavy rainfall because that’s a natural thing that happens and can never stop
Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!