Answer:
The distance between the ship at N 25°E and the lighthouse would be 7.26 miles.
Step-by-step explanation:
The question is incomplete. The complete question should be
The bearing of a lighthouse from a ship is N 37° E. The ship sails 2.5 miles further towards the south. The new bearing is N 25°E. What is the distance between the lighthouse and the ship at the new location?
Given the initial bearing of a lighthouse from the ship is N 37° E. So,
is 37°. We can see from the diagram that
would be
143°.
Also, the new bearing is N 25°E. So,
would be 25°.
Now we can find
. As the sum of the internal angle of a triangle is 180°.

Also, it was given that ship sails 2.5 miles from N 37° E to N 25°E. We can see from the diagram that this distance would be our BC.
And let us assume the distance between the lighthouse and the ship at N 25°E is 
We can apply the sine rule now.

So, the distance between the ship at N 25°E and the lighthouse is 7.26 miles.
Answer:
Step-by-step explanation:
Because it is a square root
Answer:
3 necklaces
Step-by-step explanation:
$40.50-$30.00=$10.50 Subtract her total money and cost of dress
$10.50-$3.50=$6.00 subtract each necklace price from remaining money
$6.00-$3.50=$3.50 keep subtracting price of necklace
$3.50-$3.50=$0 that was 3 necklaces
Answer:Bote
Step-by-step explanation: both