At the top:
Potential Energy = (mass) x (gravity) x (height)
= (30 kg) x (9.8 m/s²) x (3 meters)
= 882 joules
At the bottom:
Kinetic Energy = (1/2) x (mass) x (speed)²
= (1/2) x (30 kg) x (3 m/s)²
= (15 kg) x (9 m²/s²)
= 135 joules .
He had 882 joules of potential energy at the top,
but only 135 joules of kinetic energy at the bottom.
Friction stole (882 - 135) = 747 joules of his energy while he slid down.
The seat of his jeans must be pretty warm.
Answer:
The nail will stick to the bar magnet because it will become magnetized, and it's metal. The presence of the nearby north pole rearranges the magnetic domains inside the steel so that their south poles all point toward the north pole of the permanent magnet. As a result, the other end of the nail becomes a north pole.Magnets attract iron due to the influence of their magnetic field upon the iron. ... When exposed to the magnetic field, the atoms begin to align their electrons with the flow of the magnetic field, which makes the iron magnetized as well. This, in turn, creates an attraction between the two magnetized objects.
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.