linear charge density of system of two line charges is given as

now as we know that electric field due to a line charge at some distance from it is given by

so here we will first find the electric field of first line charge at the position of other line charge


now as we know that

here q = charge on the line charge system at which force is required
E = electric field on that system of charge where force is required
now we can find the charge by


Now using the above formula



so force on the part of wire is F = 0.0811 N
Answer:
a) Acceleration of runner is 1.33 m/s²
b) Acceleration of motorcycle is 2.85 m/s²
c) The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.
Explanation:
t = Time taken
u = Initial velocity = 0
v = Final velocity
s = Displacement
a = Acceleration
Equation of motion

Acceleration of runner is 1.33 m/s²

Acceleration of motorcycle is 2.85 m/s²

The runner moves 2.94 m

The motorcycle moves 84.21 m
The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.
Answer:
The tension in the string connecting block 50 to block 51 is 50 N.
Explanation:
Given that,
Number of block = 100
Force = 100 N
let m be the mass of each block.
We need to calculate the net force acting on the 100th block
Using second law of newton



We need to calculate the tension in the string between blocks 99 and 100
Using formula of force


We need to calculate the total number of masses attached to the string
Using formula for mass


We need to calculate the tension in the string connecting block 50 to block 51
Using formula of tension

Put the value into the formula



Hence, The tension in the string connecting block 50 to block 51 is 50 N.
Frequency, is the number of times in a cycle