<h3>

</h3>
<u>Here Given,</u>
Mass = 100 gram
Change in temperature = -45°C - 15°C => -55°C
Specific heat of glass (c) = 0.800J/g°C
★Heat Energy (Q) = mc∆t
➙ 100g × (-55)°C × 800/1000 J/g°C
➙ 10 × (-55) × 8
➙ -4400 J
★ Hence, Heat Energy is required to cause this change -4400 J = <u>4400J</u>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>
Triple beam balance/scale to find mass, and graduated cylinder to find volume
Answer:
one that acts in the direction of the acceleration is the static friction force. The ... Express fs,max in terms of Fn in the x ... ma. FF = − g n. Fn − w = may = 0 or, because ay = 0 and Fg = mg, mg. F = n.
Answer:
we cant see the digram bro
Explanation:
<span>Total KE = KE (rotational) + KE (translational)
Moment of inertia of sphere is I = (2/5)mr^2
So KE (rotational) = (1/2) x I x w^2 = (1/2) x (2/5)mr^2 x w^2 = (1/5) x m x r^2 x w^2
KE (translational) = (1/2) x m x v^2 = (1/2) x m x (rw)^2 = (1/2) x m x r^2 x w^2
Hence KE = (1/5) x m x r^2 x w^2 + (1/2) x m x r^2 x w^2 = m x r^2 x w^2 ((1/5) + (1/2))
KE = (7/10) m x r^2 x w^2
Calculating the fraction of rotational kinetic energy to total kinetic energy,
= rotational kinetic energy / total kinetic energy
= (1/5) x m x r^2 x w^2 / (7/10) m x r^2 x w^2 = (1/5) / (7/10) = 2 / 7
The answer is 2 / 7</span>