Yes thats correct....becuase all of your weight is concentrated on a small area compared to the larger surface area of your feet!
is that what your question was?
Answer:
1.1648×10⁻¹¹ N
Explanation:
Using
F = qvBsinФ..................... Equation 1
Where F = Force on the proton, q = charge, v = velocity, B = magnetic Field, Ф = angle between the magnetic Field and the velocity.
Note: The angle between v and B = 90°
Given: v = 5.2×10⁷ m/s, B = 1.4 T, q = 1.6×10⁻¹⁹ C, Ф = 90°
Substitute into equation 1
F = 1.6×10⁻¹⁹(5.2×10⁷)(1.4)sin90°
F = 11.648×10⁻¹²
F = 1.1648×10⁻¹¹ N.
The answer to this question is false
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v: