Answer:
m = 9795.9 kg
Explanation:
v = 35 m/s
KE = 6,000,000 J
Plug those values into the following equation:
6,000,000 J = (1/2)(35^2)m
---> m = 9795.9 kg
<span> For any body to move in a circle it requires the centripetal force (mv^2)/r.
In this case a ball is moving in a vertical circle swung by a mass less cord.
At the top of its arc if we draw its free body diagram and equate the forces in radial
direction to the centripetal force we get it as T +mg =(mv^2)/r
T is tension in cord
m is mass of ball
r is length of cord (radius of the vertical circle)
To get the minimum value of velocity the LHS should be minimum. This is possible when T = 0. So
minimum speed of ball v at top =sqrtr(rg)=sqrt(1.1*9.81) = 3.285 m/s
In the second case the speed of ball at top = (2*3.285) =6.57 m/s
Let us take the lowest point of the vertical circle as reference for potential energy and apllying the conservation of energy equation between top & bottom
we get velocity at bottom as 9.3m/s.
Now by drawing the free body diagram of the ball at the bottom and equating the net radial force to the centripetal force
T-mg=(mv^2)/r
We get tension in cord T=13.27 N</span>
Yes the answer is correct
In the first case, the force acting on the spring is the weight of the mass:
This force causes a stretching of
on the spring, so we can use these data to find the spring constant:
In the second case, the first mass is replaced with a second mass, whose weight is
And since we know the spring constant, we can calculate the new elongation of the spring:
Explanation:
The principle of an electric motor is based on the current carrying conductor which produces magnetic field around it. A current carrying conductor is placed perpendicular to the magnetic field so that it experiences a force.
The largest electric motors are used for ship propulsion, pipeline compression and pumped-storage applications with ratings reaching 100 megawatts. Electric motors are found in industrial fans, blowers and pumps, machine tools, household appliances, power tools and disk drives.