Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
<span> Second-level consumer </span>
Answer:
Oh wow so this is why you stole those points from me
Explanation:
Frequency is given in units of Hertz (Hz) and is defined as the number of cycles per second. The sound wave has 30,000 cycles per second, so its frequency is 30,000Hz.
This is more conveniently expressed as 30kHz, where the k indicates a multiplier of 1,000.