Answer:
The velocity of the boat with respect to the ground is 3 km/h
Explanation:
The speed of an object is different depending on the reference system you use. This is called relative speed.
A boat travels upstream, this means that it moves in the opposite direction to the river current.
A boat travels upstream, this means that it moves in the opposite direction to the river current. Then, if the boat moves in the positive direction of the x axis at 10 km / h with respect to the water of a river, the water flows in the negative direction of the x axis at 7 km / h with respect to the ground.
This causes the speed of the boat relative to the ground to be calculated as follows:
<em>VbG = Vbw - VwG
</em>
where VbG is the speed of the boat relative to the ground, Vbw is the speed of the boat relative to the water of the river and VwG is the speed of the water relative to the ground.
So: VbG=10 km/h – 7 km/h
<u><em>VbG= 3 km/h
</em></u>
The direction of this velocity is in the positive x-direction.
Answer:
Explanation: Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outermost (valence) electrons, atoms can fill up their outer electron shell and gain stability.
Q = mcθ
Where m = mass of water in kg.
c = specific heat capacity in kJ/kg⁰C, c for water = 4200 kJ/kg⁰C
θ = temperature rise in ⁰C
Q = 100*4200* 20 Note here the temperature rise is 20 ⁰C
Q = 8 400 000 J
In calories, 4.2 J = 1 Calorie
= 8 400 000 / 4.2 = 200 000
Q = 200 000 Calories