Force between two charges =
( 1/4πε₀ ) · (Charge #1) · (Charge #2) / (Distance between them)²
in the direction away from each other.
In other words, if the force is positive, the charges are repelling.
If the force is negative, the charges are attracting.
Since the baseball is half the weight of the softball, the baseball has to go twice as fast as the softball.
So the best answer would be D
Answer:
100J
Explanation:
Kinetic energy=1/2mv^2
Kinetic energy=(1/2 x 8)x5^2
Kinetic energy=4x25
Kinetic energy=100
100J
Answer:
PE=mgh
M= Mass (kg)
G= Gravitational field strength (N/kg)
H= Hight (m)
PE= Gravitational Potential Energy (J)
Explanation:
Gravitational Potential Energy is the energy stored in a object due to its position above the Earth's surface.
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²