The population would decrease, the more predators there are the more food needed for the species .
Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Complete Question:
To aid in the prevention of tooth decay, it is recommended that drinking water contain 0.800 ppm fluoride. How many grams of F− must be added to a cylindrical water reservoir having a diameter of 2.02 × 102 m and a depth of 87.32 m?
Answer:
2.23x10⁶ g
Explanation:
The concentration of the fluoride (F⁻) must be 0.800 ppm, which is 0.800 parts per million, so the water must have 0.800 g of F⁻/ 1000000 g of the solution. The density of the water at room temperature is 997 kg/m³ = 997x10³ g/m³. So, the concentration of the fluoride will be:
0.800 g of F⁻/ 1000000 g of the solution * 997x10³ g/m³
0.7976 g/m³
The volume of the reservoir is the volume of the cylinder: area of the base * depth. The base is a circumference, which has an area:
A = πR², where R is the radius = 1.01x10² m (half of the diameter)
A = π*(1.01x10²)²
A = 32047 m²
The volume is then:
V = 32047 * 87.32
V = 2.7983x10⁶ m³
The mass of the F⁻ is the concentration multiplied by the volume:
m = 0.7976 * 2.7983x10⁶
m = 2.23x10⁶ g
Where is the chooses for you question
Answer:
Elements form compounds to satisfy the octet rule. Noble gasses never form compounds because they already satisfy the octet rule.
Explanation:
The octet Rule is the theory that an element will attempt to gain a valence of 8 by binding with another element in it's vicinity. This can happen in a variety of ways, but the main thing to remember is that they will take the "shortest path" to 8(I.e an element will sometimes lose an electron or 2 if it has a valence 1 or 2 to loop back around to 8, while an element with a valence of 6 or 7 will attempt to gain 2 or 1 electrons).
Valence of elements can be counted by group in the image attached.
Group 1 has a valence of 1, Group 2 has a valence of 2, then we move to group 13 which has a valence of 3, group 14 has a valence of 4, group 15 has a valence of 5, group 16 has 6, group 17 has 7, and group 18 is the noble gasses which have 8.