CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.
Answer and Explanation:
Two hydrogen atoms, each containing one electron, approach each other in the formation of a molecule of hydrogen. Each atom needs a total of two electrons to fill their outermost energy level and make them stable. The best choice is to share their single electrons. Hence, a pair of bonding electrons is shared between the hydrogen atoms in the molecules.
This constitutes a single covalent bond. Hence, the correct option is B)
Answer:
Explanation:
Water is called the universal solvent. It is a polar molecule (105 degree angle between the H atoms) that gives it a + and a - side so to speak....which allows it to 'pull apart' substances....overcome their intra-molecular attractions to each other ...i.e. disssovle them
Answer:
B
Explanation:
Molarity = 0.010M
Volume = 2.5L
Applying mole-concept,
0.010mole = 1L
X mole = 2.5L
X = (0.010 × 2.5) / 1
X = 0.025moles
0.025moles is present in 2.5L of NaOH solution.
Molar mass of NaOH = (23 + 16 + 1) = 40g/mol
Number of moles = mass / molar mass
Mass = number of moles × molar mass
Mass = 0.025 × 40
Mass = 1g
1g is present in 2.5L of NaOH solution