Answer:
Molar mass of Al2O3 = 101.961276 g/mol
This compound is also known as Aluminium Oxide.
Convert grams Al2O3 to moles or moles Al2O3 to grams
Molecular weight calculation:
26.981538*2 + 15.9994*3
Percent composition by element
Element Symbol Atomic Mass # of Atoms Mass Percent
Aluminium Al 26.981538 2 52.925%
Oxygen O 15.9994 3 47.075%
Explanation:
Percent composition by element
Element Symbol Mass Percent
Aluminium Al 52.925%
Oxygen O 47.075%
<h3><u>Answer;</u></h3>
Polar: IF, PCl3, IF5
Nonpolar: CS2, SO3, SF6
<h3><u>Explanation:</u></h3>
- Polar molecules form when two atoms do not share electrons equally in a covalent bond.
- A molecule is classified as a polar molecule when the arrangement of the atoms is such that one end of the molecule has a positive electrical charge and the other end has a negative charge.
- A non-polar molecule does not have electrical poles.The electrons are distributed more equally.
- Therefore, a non-polar molecule does not have a profusion of charges at the opposite ends. The majority of hydrocarbon liquids are non-polar molecules.
Answer:
By absorbing energy electron is jump into higher energy level. This is called excitation.
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Because the calcium ion donates two electrons to achieve the stable state. So the layer of electrons decrease form 4 layers(2,8,8,2) to 3 layers(2,8,8). Thus, the radius of a calcium ion is smaller than a calcium atom.