1.5052g BaCl2.2H2O => 1.5052g / 274.25 g/mol = 0.0054884 mol
=> 0.0054884 mol Ba
<span>This means that at most 0.0054884 mol BaSO4 can form since Ba is the limiting reagent. </span>
<span>0.0054884 mol BaSO4 => 0.0054884 mol * 233.39 g/mol = 1.2809 g BaSO4</span>
Answer:
The difference in the electronegativities of chlorine and boron is 3.0 - 2.0 = 1.0 ; the difference in between chlorine and carbon is 3.0 = 2.5 = 0.5 . Consequently, the B-Cl bond is more polar ; the chlorine atom asrries the partial negative charge because it has higher electronegativity .
Explanation:
hope it helps!
Fe^2 O^3 + 6HCl --> 2FeCl^3 + 3H^2 O
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
Answer:Mass of Potassium chloride =1.762g
Explanation:
Mass of empty beaker = 23.100 g
Mass of beaker with Potassium chloride = 24.862g
Mass of Potassium chloride = Final weight - initial weight = Mass of beaker with Potassium chloride - Mass of empty beaker = 24.862-23.100 = 1.762g