Find moles:
<span>36.0 g of glucose divided by 180 g/mol = 0.200 moles of glucose </span>
<span>find molarity: </span>
<span>0.200 moles of glucose / 2 litres = 0.100 Molar solution </span>
Answer:
Final temperature of calorimeter is 25.36^{0}\textrm{C}
Explanation:
Molar mass of anethole = 148.2 g/mol
So, 0.840 g of anethole =
of anethole = 0.00567 moles of anethole
1 mol of anethole releases 5539 kJ of heat upon combustion
So, 0.00567 moles of anethole release
of heat or 31.41 kJ of heat
6.60 kJ of heat increases
temperature of calorimeter.
So, 31.41 kJ of heat increases
or
temperature of calorimeter
So, the final temperature of calorimeter = 
Answer:
The solution is always homogeneous mixture and transparent through which the light can travel. The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture while the sand can not dissolve in water and sand particles scatter the light.
Explanation:
Solution:
"The solution is always homogeneous mixture and transparent through which the light can travel"
The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture. The solubility of sugar is high as compared to the sand in water because the negative and positive ends of sucrose easily dissolve into the polar solvent i.e, water
Suspension:
"Suspension is the heterogeneous mixture, in which the solute particles settle down but does not dissolve"
The mixture of water and sand is suspension. The sand can not dissolve in water because it is mostly consist of quartz. The nonpolar covalent bonds of sand are too strong and cannot be break by water molecules.