Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
There is two different types but i’ll just do both meanings just incase.
Graham's Law of Diffusion: the rate of diffusion of one gas through another is inversely proportional to the square root of the density of the gas.
Graham's Law of Effusion: the rate of effusion of a gas is inversely proportional to the square root of the density of the gas.
hopes this helps..!
1) This is a definition.
2) Protons are given by the bottom number (since atomic number = number of protons).
3) Neutrons = (mass number)-(atomic number), which are the top and bottom numbers, respectively.
4) Nuclear fusion involves combining two things together, which is only reflected by the last option.
5) This is a fact.
6) This is a fact.
7) This is a fact.
8) This is a fact.
9) The correct option is the explanation.
Answer:
44.2 L
Explanation:
Use Charles Law:

We have all the values except for V₂; this is what we're solving for. Input the values:
- make sure that your temperature is in Kelvin
From here, we need to get V₂ by itself. To do this, multiply by 273 on both sides:

Therefore, V₂ = 44.2 L
It's also helpful to know that temperature and volume are linearly related. So, when temperature drops, so will volume and vice versa.