Distance traveled by him = circumference of that circular path = 2πr = 2π(3.5)
= 7π = 7×3.14 = 21.98 m
time = 8.9 s [ Given ]
Now, Average speed = distance / time
s = 21.98 / 8.9
s = 2.46 m/s
Hope this helps!
The question is incomplete. The complete question is :
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.
What is the frequency of the sound?
Solution :
Given :
The distance between the two loud speakers, 
The speaker are in phase and so the path difference is zero constructive interference occurs.
At the point
, the speakers are out of phase and so the path difference is 
Therefore,




Thus the frequency is :


Hz
In this question force is measured in g cm/s2 so we know that to get the answer we times g by cm/s2
50 × 20 = 1000
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.