B. We can see only one side of the Moon from Earth.
( we only see one side of the moon because the moon rotates around the Earth)
Answer: G00gle got you bro
Explanation:
Yea
Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
The answer is B, or endoplasmic reticulum.