Answer:
Cedar, mahogany, red wood or something else is fine, but the only downside is that it will cost you more. However, a project that is partially or fully exposed to the elements, something more than normal lumber is a must. The most cost effective method is to use pressure treated lumber.
Explanation:
Answer: A
Explanation: the first answer is more reasonable than the rest of them , hope this helped
Yes, it is possible to combine the same two elements to form two different compounds. An example is carbon dioxide CO2 and carbon monoxide CO. This is because two elements can form different types of bond and end up with different compounds.
There is a limited number of elements but a large number of compounds because of the above reason.
B. Object B is the right choice
Taking into account the stoichiometry of the reaction, 34.12 grams of LiOH are produced from 9.89 g of Li.
In first place, the balanced reaction is:
2 Li + 2 H₂O ⇒ 2 LiOH + H₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Li= 2 moles
- H₂O= 2 moles
- LiOH= 2 moles
- H₂= 1 mole
The molar mass of each compound is:
- Li= 6.94 g/mole
- H₂O= 18 g/mole
- LiOH= 23.94 g/mole
- H₂= 2 g/mole
By reaction stoichiometry, the following amounts of mass of each compound participate in the reaction:
- Li= 2 moles× 6.94 g/mole= 13.88 g
- H₂O= 2 moles× 18 g/mole= 36 g
- LiOH= 2 moles× 23.94 g/mole= 47.88 g
- H₂= 1 mole× 2 g/mole= 2 g
Then you can apply the following rule of three: if by reaction stoichiometry 13.88 g of Li produce 47.88 g of LiOH, 9.89 g of Li produce how much mass of LiOH?

Solving:
<u><em>mass of LiOH= 34.12 grams</em></u>
Finalli, 34.12 grams of LiOH are produced from 9.89 g of Li.
Learn more: