C5H12 (l) + 8O2 (g) ----> 5CO2 (g) + 6H2O (l)
Delta H = -3505.8 kJ/mol
C (s) + O2 (g) -----> CO2 (g)
Delta H = -393.5 kJ/mol
H2 (g) + (1/2)O2 (g) ------> H2O (l)
Delta H = -286 kJ/mol
Possible answers:
a. +35 kJ/mol
b. + 1,073 kJ/mol
c. -4,185 kJ/mol
d. -2,826 kJ/mol
e. -178 kJ/mol
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.
The motion of the molecules decreases.
<u>Explanation</u>:
- Gases are formed when the energy in a system overcomes the attractive forces between the molecules. The gases expand to fill the space they occupy. In this way, the gas molecules interact little. In the gaseous state, the molecules move very quickly. As the temperature decreases, the amount of movement of the individual molecules also decreases.
- The fast-moving particle slows down. When a particle speeds up, it has more kinetic energy. When a particle slows down, it has less kinetic energy. The particles in solid form are commonly connected through electrostatic powers. They don't get enough space to move around, therefore, their speed diminishes, they can't keep their standard speed like in the vaporous or fluid state.
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :

Answer:
B
Explanation:
the candle is hot so the first energy form should be heat. u could now just eliminate the rest but for further notice. the heat melts the wax in the candle, which is a physical change but also the thread is burning out which is a chemical change then light follows