N2 = 3*n1
T2 = 2*T1
V1 = V2
(n2 * T2)/P2 = (n1 * T1)/P1
3 n1 * 2 T1 / P2 = n1 *T1 / P1
P2 = 6*P1
Since P2 is 6P1, it is 6 times greater than original pressure
The correct answer is y=-2x+(1/2)
y = f'(x)· x + c
Y = -2x + C
1 = -2x π/4 + C
=) C = I + π/2
y=-2x+(1/2) is the first-degree polynomial.
First-degree polynomials are the simplest polynomials. Here, we'll talk about a few qualities and connect the terms polynomial, function, and equation. Write a polynomial equation in standard form before attempting to solve it. Factor it, then set each variable factor to zero after it has reached zero. The original equations' answers are the solutions to the derived equations. Factoring cannot always be used to solve polynomial equations. For instance, the polynomial 2x+5 has an exponent of 1. The most typical kinds of polynomials used in algebra and precalculus are zero polynomial functions.
Learn more about polynomial functions here :-
brainly.com/question/22592200
#SPJ4
Our values can be defined like this,



The problem can be solved for part A, through the Work Theorem that says the following,

Where
KE = Kinetic energy,
Given things like that and replacing we have that the work is given by
W = Fd
and kinetic energy by

So,

Clearing F,

Replacing the values


B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.