Answer:
1.8 × 10⁻⁸ Hm
Explanation:
Given that:
The refractive index of the film = 19
The wavelength of the light = 136.8 μ m
The thickness can be calculated by using the formula shown below as:
Where, n is the refractive index of the film
is the wavelength
So, thickness is:
Thickness = 1.8 μ m
Since,
1 μ m = 10⁻⁸ Hm
So,
Thickness = 1.8 × 10⁻⁸ Hm
Momentum = mass x velocity, so 500kg x 2m/s = 1000 kg m/s
Answer:
Cruising at 35,000 feet in an airliner, straight toward the east,
at 500 miles per hour
Explanation:
Explanation:
Solution:
Let the time be
t1=35min = 0.58min
t2=10min=0.166min
t3=45min= 0.75min
t4=35min= 0.58min
let the velocities be
v1=100km/h
v2=55km/h
v3=35km/h
a. Determine the average speed for the trip. km/h
first we have to solve for the distance
S=s1+s2+s3
S= v1t1+v2t2+v3t3
S= 100*0.58+55*0.166+35*0.75
S=58+9.13+26.25
S=93.38km
V=S/t1+t2+t3+t4
V=93.38/0.58+0.166+0.75+0.58
V=93.38/2.076
V=44.98km/h
b. the distance is 93.38km
Answer:
U = 8.30×10-⁹J
Explanation:
m1 = m2 = 5.00kg masses of the spheres
d = 15.0cm = 15×10-²m
r = 5.10cm = 5.10×10-²m
R = d + r = 15×10-² + 5.10×10-²
R = 20.10 ×10-²m = 0.201m
G = 6.67×10-¹¹Nm²/kg²
U = Gm1×m2/R = potential energybetween the spheres
U = 6.67×10-¹¹×5.00×5.00/0.201
U = 8.30×10-⁹J