True, if you move something forward at 100 miles an hour but your on something moving backwards 100 miles an hour you up staying in the same location, aka zero velocity.
°C = (5/9) · (°F-32)
The "wet" thermometer is the upper one ... you can see the wet cloth wrapped around the bulb at the end. It's reading 70° F.
°C = (5/9) · (38) = 21.1° C
The "dry" thermometer is the lower one. It's reading 80° F.
°C = (5/9) · (48) = 26.7° C
So it looks like choice-A is your answer.
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :
We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,
On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.
Answer:
Depending on the relative position of the Earth the Sun and Neptune in the Earths orbit the distances are;
The closest (minimum) distance of Neptune from the Earth is 29 AU
The farthest (maximum) distance of Neptune fro the Earth is 31 AU
Explanation:
The following parameters are given;
The distance from the Earth to the Sun = 1 AU
The distance of Neptune from the Earth = 30 AU
We have;
When the Sun is between the Earth and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 + 1 = 31 AU
When the Earth is between the Sun and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 - 1 = 29 AU
Therefore, the closest distance from Neptune to the Earth in the Earth's Orbit is 29 AU
The farthest distance from Neptune to the Earth in the Earth's orbit is 31 AU.
We can't look at Figure 4. We don't know where a and b are. We can't see the blue shaded area. We don't know what our method above was. We can't see the green skinny rectangle.