Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
The Hydrogen bomb is a thermonuclear bomb where a fission reaction is used to trigger a fusion reaction.
Answer: Option A
<u>Explanation:
</u>
The Concept of Hydrogen Bomb or H-Bomb is primarily based on nuclear fusion where different isotopes of hydrogen diffuse to fuse their atomic nuclei into a bigger atom, releasing a significant and enormous amount of energy that can ruin a half of the world.
A hydrogen or thermonuclear bomb contains a firearm, but the reaction process has two stages. Uses primary fission energy to activate the next fusion reaction. The energy out by the fusion is nearly four times more than the energy out during fission, which gives more power to a hydrogen bomb.
It’s A.Longitudinal. Tell me if I’m right
Answer: 20.4m
Explanation:
Mass = 0.145kg
Initial velocity, Vi =20m/s
Initial kinetic energy K =1/2mv^2
Initial potential energy Ui = mgx = 0joules
: From conservation of energy,
Uf + Kf = Ui + Ki ( where f represent (final) )
Thus
mgXf + 0 = 0+1/2 mv^2
Xf = Vi^2/ 2g
= (20m/s) ^2/ 2(9.81m/s)^2
=20.4m