Answer:
4
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of Earth
= Mass of Moon
r = Distance between Earth and Moon
Old gravitational force

New gravitational force

Dividing the equations

The ratio is 
The new force would be 4 times the old force
Explanation:
The momentum of the three objects are as follow :
11 kg-m/s, -65 kg-m/s and -100 kg-m/s
Before collision, the momentum of the system is :

After collison, they move together. It means it is a case of inelastic collision. In this type of collision, the momentum of the system remains conserved.
It would mean that, after collision, momentum of the system is equal to the initial momentum.
Hence, final momentum = -154 kg-m/s.
Answer:
<h2> 4kg</h2>
Explanation:
Step one:
given
length of rod=2m
mass of object 1 m1=1kg
let the unknown mass be x
center of mass<em> c.m</em>= 1.6m
hence 1kg is 1.6m from the <em>c.m</em>
and x is 0.4m from the <em>c.m</em>
Taking moment about the <em>c.m</em>
<em>clockwise moment equals anticlockwise moments</em>
1*1.6=x*0.4
1.6=0.4x
divide both sides by 0.4 we have
x=1.6/0.4
x=4kg
The mass of the other object is 4kg