1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
3 years ago
10

A freshman's mass is 44.8kg, therefore the freshman’s weight is ___N.

Physics
2 answers:
Gennadij [26K]3 years ago
8 0

Answer:

98.76 pounds

Explanation:

Karo-lina-s [1.5K]3 years ago
3 0
Weight is a force.
Force equals mass times acceleration
In this case the acceleration is the force of gravity. 9.8 m/s^2

F=ma
F= 44.8 kg x 9.8 m/s^2
F = 439 N
You might be interested in
Why do you think the combined wave is more powerful than either the transverse or longitudinal wave with the same amplitude
liq [111]

Answer:

Explanation:

The combined wave only end up been more powerful than the Longitudinal wave. This means, the transverse wave is more powerful than the combined wave. In transverse wave, the oscillation is perpendicular to the direction of the wave, while in longitudinal wave, the motion of the movement of the object is parallel to the movement of the wave. And in combined wave, the movement of the medium is in a circular manner,

6 0
3 years ago
Which statement best describes the isothermal process? A. the temperature remains constant B. the temperature increases at a con
Veronika [31]

Answer:

The answer would be A. - the temperature remains constant

Explanation:

An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0

5 0
3 years ago
Read 2 more answers
Two identical trucks have mass 5100 kg when empty, and the maximum permissible load for each is 8000 kg. the first truck, carryi
Oksanka [162]
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg. The key here is the conservation of momentum. For the first truck, the momentum is 0(5100 + 4300) The second truck has a starting momentum of 60(5100 + x) And finally, after the collision, the momentum of the whole system is 42(5100 + 4300 + 5100 + x) So let's set the equations for before and after the collision equal to each other. 0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x) And solve for x, first by adding the constant terms 0(5100 + 4300) + 60(5100 + x) = 42(14500 + x) Getting rid of the zero term 60(5100 + x) = 42(14500 + x) Distribute the 60 and the 42. 60*5100 + 60x = 42*14500 + 42x 306000 + 60x = 609000 + 42x Subtract 42x from both sides 306000 + 18x = 609000 Subtract 306000 from both sides 18x = 303000 And divide both sides by 18 x = 16833.33 So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums. 60(5100 + 16833.33) = 60(21933.33) = 1316000 42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000 They match. The 2nd truck was definitely over loaded.</span>
6 0
3 years ago
The height of a projectile t seconds after it is launched straight up in the air is given by f (t )equals negative 16 t squared
velikii [3]

Answer:

\displaystyle a(5)=-32

Explanation:

<u>Instant Acceleration</u>

The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.

Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

\displaystyle v(t)=\frac{df}{dt}

And the acceleration is

\displaystyle a(t)=\frac{dv}{dt}

Or equivalently

\displaystyle a(t)=\frac{d^2f}{d^2t}

The given height of a projectile is

f(t)=-16t^2 +238t+3

Let's compute the speed

\displaystyle v(t)=-32t+238

And the acceleration

\displaystyle a(t)=-32

It's a constant value regardless of the time t, thus

\boxed{\displaystyle a(5)=-32}

3 0
3 years ago
A 30 kg child went down a 10 m tall slide. Assuming no energy was lost as friction, what was the child's velocity when he reache
AveGali [126]
14 m/s or 50km/h. See the details in the attached picture.

5 0
3 years ago
Other questions:
  • Most calculators operate on 6.0 V. If, instead of using batteries, you obtain 6.0 V from a transformer plugged into 110-V house
    14·1 answer
  • If Superman wants to slow down a fast car with speed 20 m/s and mass 1000 kg, how much force in N does he need to apply if he wa
    9·1 answer
  • 7. What major disaster followed the comet of 1664?
    14·1 answer
  • Considering thermal equilibrium in your answer, explain why some materials feel different temperatures.
    9·1 answer
  • Please help right now!!! MARK BRAINLIEST
    15·1 answer
  • What is the total amount of heat in a substance
    12·1 answer
  • PLEASE HELP!! <br><br> 6. What amount of force is needed to accelerate a 560kg bus at 1.4m/s??
    7·2 answers
  • A 1250 kg car is stopped at a traffic light. A 3550 kg truck moving at 8.33 m/s hits the car from behind. If bumpers lock, how f
    8·1 answer
  • 57. A red ball (m= 10 kg) is moving at 3 m/s. A green ball (m = 8 kg) is moving at 3.5 m/s. Which ball has more
    7·1 answer
  • How can you tell there is only one atom of oxygen in H2O?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!