Answer:
The capillary rise of the glycerin is most nearly 
Explanation:
From the question we are told that
The diameter of the glass tube is 
The density of glycerin is 
The surface tension of the glycerin is 
The capillary rise of the glycerin is mathematically represented as

substituting value


Therefore the height of the glass tube the glycerin was able to cover is
The presence of mass makes gravity. Doesn't matter whether it's a planet, a black hole, a puppy, or a speck of dust.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Complete Question
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns.
The output from the secondary coil is 12 V
Answer:
The value is 
Explanation:
From the equation we are told that
The input voltage is 
The number of turns of the primary coil is 
The output from the secondary is 
From the transformer equation

Here
is the number of turns in the secondary coil
=> 
=>
=>
Answer:
For example, an earthquake of magnitude 5.5 releases about 32 times as much energy as an earthquake measuring 4.5. Another way to look at this is that it takes about 900 magnitude 4.5 earthquakes to equal the energy released in a single 6.5 earthquake.
Explanation: