Answer: A) Storing experimental samples
Explanation:
It is a common piece of laboratory glassware that can be made of glass or plastic and is opened at the top and closed at the bottom.
It cannot be used for measurements because there is no graduation indicating the volume.
Althought it can contain extra chemicals left over from an experiment, it is not the main proposal of the glassware that is to store samples.
It cannot be used in a microscope and the object for that is a microscope slide.
It would be 35.8 Calories or calories. Not sure about that part. Hope this helps though.
Answer:
New volume is 25.0 mL
Explanation:
Let's assume the gas sample behaves ideally.
According to combined gas law for an ideal gas-

where,
and
represent initial and final pressure respectively
and
represent initial and final volume respectively
and
represent initial and final temperature (in kelvin) respectively
Here,
,
,
and 
So, 
So, the new volume is 25.0 mL
DE = dH - PdV
<span>2 H2O(g) → 2 H2(g) + O2(g) </span>
<span>You can see that there are 2 moles of gas in the reactants and 3 moles of gas in the products. </span>
<span>1 moles of ideal gas occupies the same volume as 1 mole of any other ideal gas under the same conditions of temp and pressure. </span>
<span>Since it is done under constant temp and pressure that means the volume change will be equal to the volume of 1 mole of gas </span>
<span>2 moles reacts to form 3 moles </span>
<span>The gas equation is </span>
<span>PV = nRT </span>
<span>P = pressure </span>
<span>V = volume (unknown) </span>
<span>n = moles (1) </span>
<span>R = gas constant = 8.314 J K^-1 mol^-1 </span>
<span>- the gas constant is different for different units of temp and pressure (see wikki link) in this case temp and pressure are constant, and we want to put the result in an equation that has Joules in it, so we select 8.314 JK^-1mol^-1) </span>
<span>T = temp in Kelvin (kelvin = deg C + 273.15 </span>
<span>So T = 403.15 K </span>
<span>Now, you can see that PV is on one side of the equation, and we are looking to put PdV in our dE equation. So we can say </span>
<span>dE = dH -dnRT (because PV = nRT) </span>
<span>Also, since the gas constant is in the unit of Joules, we need to convert dH to Joules </span>
<span>dH = 483.6 kJ/mol = 483600 Joules/mol </span>
<span>dE = 483600 J/mol - (1.0 mol x 8.314 J mol^-1K-1 x 403.15 K) </span>
<span>dE = 483600 J/mol - 3351.77 J </span>
<span>dE = 480248.23 J/mol </span>
<span>dE = 480.2 kJ/mol </span>
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
Boyle's law says, PV=RT
- Here P represents the pressure, V represents the volume and T represents the temperature. R is a constant. The volume of an ideal gas is inversely proportional to its pressure if the temperature is constant.
- When a bubble is present in deep water it has water pressure and atmospheric pressure. Then the Volume increases when water pressure raises which is proportional to the depth reduces.
- But we should not finalize the volume of the bubble will be four-time as great as at the top than the bottom. if the bottom of the lake is at four atmospheres, the temperature will not be equal to the top.
- If the bubble travels from the bottom to the top or vice-versa, it's going to lose or gain heat in a way that must be quite hard to measure.