Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
Answer:
Chromium
Explanation:
Cr has 24 atomic number and mass number 52
IT will be easy to know how chemical reactions occur
It will helps to know the fundamental particles of an atom
First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ
Answer:
21.8 grams.
Explanation:
Molar mass data from a modern periodic table:
How many moles of MgO will be produced if Mg is the limiting reactant?
Number of moles of Mg:
.
The ratio between the coefficient of Mg and that of MgO is 2:2. Two moles of Mg will make two moles of MgO. 0.670644 moles of MgO will be produced if Mg is the limiting reactant.
How many moles of MgO will be produced if O₂ is the limiting reactant?
Number of moles of O₂:
.
The ratio between the coefficient of O₂ and that of MgO is 1:2. One mole of O₂ will make two moles of MgO.
of MgO will be produced if O₂ is in excess.
How many moles of MgO will be produced?
0.541284 is smaller than 0.670644. Only 0.541284 moles of MgO will be produced since O₂ will run out before all 16.3 grams of Mg is consumed.
What's the mass of 0.541284 moles of MgO?
Formula mass of MgO:
.
Mass of 0.541284 moles of MgO:
.