Answer:
1. Alkali metals (group 1)
2. halogens (Group 17)
3. noble gasses (group 18)
Explanation:
1. alkali metals only have one valence electron meaning that they really want to lose that one valence electron to get a full octet.
2. halogens have 7 valence electrons meaning that they just need to gain 1 to get a full octet.
3. Nobel gasses already have a full octet meaning that they don't want to react. (atoms only react to get a full octet)
I hope this helps. Let me know if anything is unclear.
The answer is 9.03 × 10²⁴<span> molecules.
</span><span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance.
Make the proportion.
</span><span>6.02 × 10²³ molecules per 1 mol
</span>x per 15 mol
6.02 × 10²³ molecules : 1 mol = x : 15 mol
x = 6.02 × 10²³ molecules * 15 mol * 1 mol
x = 90.3 × 10²³ molecules
x = 9.03 × 10 × 10²³ molecules
x = 9.03 × 10²³⁺¹ molecules
x = 9.03 × 10²⁴ molecules
It tell us the most accurate time u can get out of a clock
Letter C on the model titration curve corresponds to the point where pH equals the numerical value of pKa for HPr
<h3>What is a titration curve?</h3>
A titration curve is a graph of the pH of a solution against increasing volumes of an acid or a base that is added to the solution.
The pH of a solution is the negative logarithm to base ten of the hydrogen ion concentration and is a measure of the acidity or alkalinity of the solution.
The pKa is the acid dissociation constant of an acid solution.
In a titration of a strong acid and strong base, the pH at equivalence point is equal to the pKa of the acid.
The equivalence point is the point when equal moles of acids and base has reacted.
In the given titration curve, pH = pKa at point C.
In conclusion, for a titration curve of strong acid and base, at equivalence point, pH is equal to pKa of acid.
Learn more about equivalence point at: brainly.com/question/23502649
#SPJ1