Answer:
In short, because we are tearing up the oxygen factories to make way for carbon dioxide emitters. (Doesn't make a lot of sense, read the explanation)
Explanation:
So, 1000 years ago, we had a lot more trees, didn't have engines or cars or factories or anything, really that released carbon dioxide into the air and we had a lot more trees and since the invention of cars, engines, carbon dioxide-emitting tools and factories and all the other things that emit "Greenhouse gases" and in doing that, cleared more trees to make room for factories and roads and that has drastically changed the outlook of the carbon cycle.
Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!
Explanation:
It is given that volume is 0.50 L and molarity is 0.485 M. Hence, number of millimoles will be calculated as follows.
Number of millimoles = Molarity × Volume
As there are 1000 mL in 1 L. So, 0.50 L equals 500 mL.
Therefore, putting the given values into the above formula as follows.
Number of millimoles = Molarity × Volume
= 0.485 M × 500 mL
= 242.5
Thus, we can conclude that 242.5 millimoles of copper(II) sulfate has been added by the chemist to the flask.