Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg
<span>The thermodynamic determines the amount of chemical energy a substance has.</span>
Answer: Double displacement reaction
Explanation:
Double displacement reaction is defined as the reaction where exchange of ions takes place.
The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
The chemical reaction between aqueous magnesium sulfate and aqueous sodium carbonate is represented as:

Answer:
The temperature change from the combustion of the glucose is 6.097°C.
Explanation:
Benzoic acid;
Enthaply of combustion of benzoic acid = 3,228 kJ/mol
Mass of benzoic acid = 0.570 g
Moles of benzoic acid = 
Energy released by 0.004667 moles of benzoic acid on combustion:

Heat capacity of the calorimeter = C
Change in temperature of the calorimeter = ΔT = 2.053°C



Glucose:
Enthaply of combustion of glucose= 2,780 kJ/mol.
Mass of glucose=2.900 g
Moles of glucose = 
Energy released by the 0.016097 moles of calorimeter combustion:

Heat capacity of the calorimeter = C (calculated above)
Change in temperature of the calorimeter on combustion of glucose = ΔT'



The temperature change from the combustion of the glucose is 6.097°C.