Silicon, it's bring brother would be the prime candidate, although its compounds are notably different from those of carbon.
Oxygen = 16
Iron = 55.8
16 x 27.6% = 4.4 /4 = 1.1
55.8 x 72.4% = 40.4 /4 = 10.1
1 oxygen and 10 iron, so Fe10 O
Answer:
We need 92.3 grams of sodium azide
Explanation:
Step 1: Data given
Mass of nitrogen gas = 59.6 grams
Molar mass of nitrogen gas = 28.0 g/mol
Molar mass of sodium azide = 65.0 g/mol
Step 2: The balanced equation
2NaN3 → 2Na + 3N2
Step 3: Calculate moles nitrogen gas
Moles N2 = mass N2 / molar mass N2
Moles N2 = 59.6 grams/ 28.0 g/mol
Moles N2 = 2.13 moles
Step 4: Calculate moles NaN3
for 2 moles NaN3 we'll have 2 moles Na and 3 moles N2
For 2.13 moles N2 we need 2/3* 2.13 = 1.42 moles NaN3
Step 5: Calculate mass NaN3
Mass NaN3 = Moles NaN3 * molar mass NaN3
Mass NaN3 = 1.42 moles * 65.0 g/mol
Mass NaN3 = 92.3 grams
We need 92.3 grams of sodium azide
Covalent bond is the type of bond which involves the sharing of valence electrons between two atoms.
This bond usually arises from the equal attraction of the nuclei of the two atoms for the electrons shared.
Ionic bond, on the other hand, arises due to the transfer of electrons from the valence shell of one atom to the valence shell of the other.