Answer and Explanation:
Dipole-Dipole interactions are <u>weaker than</u> hydrogen bonds.
Hydrogen bonds are a form of dipole-dipole interactions, being the strongest form of dipole-dipole interactions.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
Answer:
Circuit 4
Explanation:
To know the correct answer to the question given above, we shall determine the current in each circuit. This can be obtained as follow:
For circuit 1:
Resistance (R) = 0.5 ohms
Voltage (V) = 20 V
Current (I) =?
V = IR
20 = I × 0.5
Divide both side by 0.5
I = 20 / 0.5
I = 40 A
For circuit 2:
Resistance (R) = 0.5 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.5
Divide both side by 0.5
I = 40 / 0.5
I = 80 A
For circuit 3:
Resistance (R) = 0.25 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.25
Divide both side by 0.25
I = 40 / 0.25
I = 160 A
For circuit 4:
Resistance (R) = 0.25 ohms
Voltage (V) = 60 V
Current (I) =?
V = IR
60 = I × 0.25
Divide both side by 0.25
I = 60 / 0.25
I = 240 A
SUMMARY
Circuit >>>>>> Current
1 >>>>>>>>>>> 40 A
2 >>>>>>>>>>> 80 A
3 >>>>>>>>>>> 160 A
4 >>>>>>>>>>> 240 A
From the above calculation, circuit 4 has the greatest electric current.
The freezing point constant means that the temperature depression when adding one mole of the solute. The mole number of the solute is 10.20/180=0.0567 mol. So the answer is 1.86*0.0567=0.105 ℃.
Answer:
K = [HI]² / [H₂] [I₂]
Explanation:
To write the expression of equilibrium constant, K, it is important that we know how to obtain the equilibrium constant.
The equilibrium constant, K for a given reaction is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient. Thus, the equilibrium constant is written as follow:
K = [Product] / [Reactant]
Now, we shall determine the equilibrium constant for the reaction given in the question above. This can be obtained as illustrated below:
H₂(g) + I₂(g) —> 2HI (g)
K = [HI]² / [H₂] [I₂]
Answer:
it is easier to rotate and single bond rather than a double bond made of a sigma bond and pi bond
Explanation:
Rotation around a single bond happens easily but it is very limited around a double bond because of the overlapping electron cloud above and below the imaginary axis between the two atoms.