You should download the app tutor.com to help you
Answer:
hwjwjwkwjwnwnnwnw wiwjwjejejejeje
When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
![K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}](https://tex.z-dn.net/?f=%20K_%7BC%7D%20%3D%20%5Cfrac%7B%5B%20C%5E%7Bc%7D%20%5D%7D%7B%5B%20A%5E%7Ba%7D%20%5D%5B%20B%5E%7Bb%7D%20%5D%7D%20)
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.
<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.
Nuclear power plants produce little to no greenhouse gas.
Nuclear power plants produce a large amount of energy for a small mass of fuel.