Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer:
a. 0.4544 N
b. 
Explanation:
For computing the normality and molarity of the acid solution first we need to do the following calculations
The balanced reaction



= 0.27264 g


= 0.006816 mol
Now
Moles of
needed is

= 0.003408 mol


= 0.333984 g
Now based on the above calculation
a. Normality of acid is


= 0.4544 N
b. And, the acid solution molarity is


= 0.00005112
=
We simply applied the above formulas
Answer:
42.50 dB
Explanation:
Determine the minimum voltage gain
amplitude of input signal ( Vi ) = 15 mV
amplitude of output signal ( Vo) = 2 V
Vo = 2 v
therefore ; minimum gain = Vo / Vi = 2 / ( 15 * 10^-3 )
= 133.33
Minimum gain in DB = 20 log ( 133.33 )
= 42.498 ≈ 42.50 dB
Answer:
a) 180 m³/s
b) 213.4 kg/s
Explanation:
= 1 m²
= 100 kPa
= 180 m/s
Flow rate

Volumetric flow rate = 180 m³/s
Mass flow rate

Mass flow rate = 213.4 kg/s
Independent variable if I’m not mistaken