Answer: r = 0.8081; s = -0.07071
Explanation:
A = (150i + 270j) mm
B = (300i - 450j) mm
C = (-100i - 250j) mm
R = rA + sB + C = 0i + 0j
R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j
R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j
Equating the i and j components;
150r + 300s - 100 = 0
270r - 450s - 250 = 0
150r + 300s = 100
270r - 450s = 250
solving simultaneously,
r = 0.8081 and s = -0.07071
QED!
Answer:
A) True
Explanation:
Yes this is true when length is creases the heat transfer coefficient decease with length.
The heat transfer(h) coefficient is varying with x by given expression
For Laminar flow

For turbulent flow

But when flow is in transitional state the heat heat transfer(h) coefficient is increases with x.But for laminar as well as turbulent flow h is decrease when x increases.
When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
<h3>What is the road about?</h3>
Note that a Yellow centerlines can be seen in roads and it is one that is often used to separate traffic moving in different directions.
Note also that Broken lines can be crossed to allow slower-moving traffic and as such, When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
See full question below
You are turning onto a two-lane road divided by a broken yellow line. You know immediately that:
Answers
You are on a two-way road.
You are on a one-way road.
The road is under repair.
You must stay to the left of the broken yellow lines.
Learn more about two-way road from
brainly.com/question/13123201
#SPJ2
Answer:
The electric current from the batteries installed in a radio supplies direct current (DC) electricity to the radio components directly as an alternative source to the Alternating Current (AC) converted to DC by the power unit located at the radio end of the cable plugged into the wall outlet.
Explanation:
Part of the power unit in a radio includes an AC to DC converter, which is an electrical circuit that is able to convert the alternating current power input from the wall outlet into a direct current output to the radio with which the radio can work
The alternative source of electric current from the batteries installed in a radio bypasses the AC to DC converter and supplies power directly to the radio so it can also work.