Answer:
You see things happen much sooner than you hear them.
Explanation:
Light travels about a million times as fast as sound.
When the ball hits the bat , it will take about a million times longer to hear the crack of the bat than to see it.
What you see is almost instantaneous.
There will be a delay until you hear the sound.
Explanation:
According to Buoyance equation,
m = ![[m' \times \frac{1 - \frac{d_{a}}{d_{w}}}{1 - \frac{d_{a}}{d}}]](https://tex.z-dn.net/?f=%5Bm%27%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd_%7Bw%7D%7D%7D%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd%7D%7D%5D)
where, m = true mass
m' = mass read from the balance = 17.320 g
= density of air = 0.0012 g/ml
= density of the balance = 7.5 g/ml
d = density of liquid octane = 0.7025 g/ml
Now, putting all the given values into the above formula and calculate the true mass as follows.
m =
= ![[17.320 g \times \frac{1 - \frac{0.0012 g/ml}{7.5 g/ml}}{1 - \frac{0.0012 g/ml}{0.7025}}]](https://tex.z-dn.net/?f=%5B17.320%20g%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B7.5%20g%2Fml%7D%7D%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B0.7025%7D%7D%5D)
=
= 17.317 g
Thus, we can conclude that the true mass of octane is 17.317 g.
Answer:
Kp = 41.53
Kc = 1.01
Explanation:
To calculate the equilibrium constant in terms of pressure, what we simply do is to use the equilibrium pressure raised to the power of the number of moles. What we are saying in essence is this:
Kp = [NOCl]^2/[NO]^2[Cl]
Kp= [0.25]^2/[0.174][0.093]^2 = 41.53
Kp = Kc (RT)^Dn
Hence, Kc = Kp/[RT]^(delta n )^-1
n = sum of the number of moles of products minus the sum of the number of moles of reactants= 2-3 = -1 in this case
Kc = 41.53/(0.0821 * 500)^1
Kc = 1.01
Two unstable elements that will react to almost anything
During the Last Glacial Maximum, much of the world was cold, dry, and inhospitable, with frequent storms and a dust-laden atmosphere. The dustiness of the atmosphere is a prominent feature in ice cores; dust levels were as much as 20 to 25 times greater than now.