Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!
"Compound" is the one among the following choices given in the question that is the <span>most specific classification of Ca(NO3)2. The correct option among all the options that are given in the question is the second option. It is actually an inorganic compound. I hope that this is the answer that has come to your help.</span>
Answer:
116.88g of table salt (NaCl) contains two formula units
Explanation:
Now,
We know that 1 formula unit of sodium chloride has a molar mass of 58.44g/mol
Hence;
Mass of 1 formula unit = 58.44g
Mass of x formula units = 116.88g
x = 116.88g * 1 formula unit/58.44g
x = 2 formula units
Therefore;
116.88g of table salt (NaCl) contains two formula units
Answer:
2.4 hrs
Explanation:
The constant speed of the truck for 6 hrs can be calculated by: speed=distance/time. Speed =(876-228)/6=648/6=108m/s. So the decreased speed = (108-13)=95m/h. Now, speed =distance /time We get 95m/h = 228/t. t=228/95 hrs = 2.4 hrs PLEASE MARK ME THE BRAINLIEST!!
Answer:
addition polymerization
Explanation:
In addition polymerization, the monomers are simply joined to each other to form a polymer having the same empirical formula as the monomer but of higher relative molecular mass. The monomers in addition polymerization are usually simple unsaturated molecules such as alkenes.
We can deduce the reaction to be an addition polymerization because of the the attachment of n to both the unsaturated monomer and the saturated polymer without the loss of any small molecule. If it was a condensation polymerization, there would have been an accompanying loss of a small molecule such as water.