Answer:
incomplete question, resistor must be there
Explanation:
Answer:
The change in gravitational potential energy of the climber-Earth system is 
Explanation:
From the question we are told that
The mass of the hiker is 
The time taken is 
The vertical elevation after time T is 
The change in gravitational potential is mathematically represented as

here g is the acceleration due to gravity with value
substituting values


Answer:
a. λ = 647.2 nm
b. I₀ 9.36 x 10⁻⁵
Explanation:
Given:
β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m
a.
The wavelength of the radiation can be find using
β = 2 π / γ * sin θ
λ = [ 2π * γ * sin θ ] / β
λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad
λ = 647.14 x 10⁻⁹ m ⇒ λ = 647.2 nm
b.
The intensity of the central maximum I₀
I = I₀ (4 / β² ) * sin ( β / 2)²
I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²
I = I₀ 9.36 x 10⁻⁵
Answer:
The centripetal acceleration of the car is
.
Explanation:
Let the mass of the car, 
Diameter of the circular path, d = 100 m
Speed of car, v = 20 m/s
Radius, r = 50 m
When an object moves in a circular path, the centripetal acceleration acts on it. It is given by :



So, the centripetal acceleration of the car is
. Hence, this is the required solution.
That just depends on the mass of the object and I think it will accelerate forwards