Answer:
C. Plate Tectonics
Explanation:
The theory of plate tectonics is when the lithosphere is separated into plates. These plates move over or float over the asthenosphere. The movement of these plates cause earthquakes and can interact with the volcanic activity.
(a) The frequency of water wave is 2 Hz.
(b) The wave speed of the water wave is 3.6 m/s.
<u>Explanation:</u>
(a) It is known that completion of one complete wave in 1 second is defined as frequency of 1 HZ. So here there are 120 waves crossing the boat in 1 minute. So the frequency of the water wave will be

As the time is 1 minute which is equal to 60 seconds and the number of waves is given as 120 then the frequency of the water wave is

So the frequency of water wave is 2 Hz.
(b) Then if the wavelength of the water wave is 1.8 m with a frequency of 2 Hz, then speed of the wave can be determined as the product of wavelength with frequency.
So Speed = Frequency × Wavelength
Speed = 2 × 1.8 = 3.6 m/s.
So the speed of the water wave is 3.6 m/s.
Answer:
12 m/s
Explanation:
Using the continuity equation, which is an extension of the conservation of mass law
ρ₁A₁v₁ = ρ₂A₂v₂
where 1 and 2 indicate the conditions at two different points of flow, in this case, point 1 is any normal position in the pip and point 2 is the conditions at the restriction.
ρ = density of the fluid flowing; note that the density of the fluid flowing (water) is constant all through the fluid's flow
A₁ = Cross sectional Area of the pipe at point 1 = (πD₁²/4)
A₂ = Cross sectional Area of the pipe at the restriction = (πD₂²/4)
v₁ = velocity of the fluid flowing at point 1 = 3 m/s
v₂ = velocity of the fluid flowing at The restriction = ?
ρ₁A₁v₁ = ρ₂A₂v₂
Becomes
A₁v₁ = A₂v₂ (since ρ₁ = ρ₂)
(πD₁²/4) × 3 = (πD₂²/4) × v₂
3D₁² = D₂² × v₂
But
D₂ = (D₁/2)
And D₂² = (D₁²/4)
3D₁² = D₂² × v₂
3D₁² = (D₁²/4) × v₂
(D₁²/4) × v₂ = 3D₁²
v₂ = 4×3 = 12 m/s
Answer: hello options related to your question is missing attached below is the missing part of your question
answer: No charge of the length of the bonds expected because the rod did not touch the charge source ( option A )
Explanation:
When the Charge is first, Furthest away and second and closest to the source charge. <em>The spring like bonds can be said to have No charge of the length of the bonds expected because the rod did not touch the charge source </em><em>when Furthest away the bond with charge will be less effective </em>
Answer:
The fourth graph is the answer
Explanation:
We have inequalities


For the first inequality all points at or below the graph of y are solutions, and for the second inequality all the points above the graph of y are the solutions. So, the solution to these inequalities are points that are above the graph of
and below the graph of
. The shaded region in the fourth graph satisfies these conditions.
<em>Looking at other choices, we see that the first two graphs do not even represent the graphs of our inequalities, and the third graph does represent the inequalities but shades the wrong region. </em>
P.S: the graph of the inequality
is dashed because
is "greater than" and not "equal to"
, so this indicates that the values on the line
are not included. And the graph of the inequality
is a solid line because
is "less than or equal to"
, so we are including the values on the line
, and that's why it's solid.