Temperature is the measurement of the average energy of the particles in a solid, liquid or gas and thermal energy is the total energy in a set amount of solid, liquid or gas. Therefore, the temperature and thermal energy is not the same thing. They are both about the particle theory, which is a theory that all particles of solid, liquid or gas are always in motion. But the difference between the two is that temperature is the "measurement" of the particles in a solid, liquid or gas and the thermal energy is the total energy in a set amount of solid, liquid or gas.
Answer:
No
Explanation:
The force of tension exerted by the string on the rock acts as centripetal force, so its direction is always towards the centre of the circle.
However, the direction of motion of the rock is always tangential to the circle: this means that the force is always perpendicular to the direction of motion of the rock.
As we know, the work done by a force on an object is

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the force and the displacement
In this situation, F and d are perpendicular, so
, therefore
and the work done is zero:

<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by

where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s

Which is the final velocity of the two railroad cars
Answer:
true
Explanation:
because the roller coaster can't work without energy
Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to
:
(2)
Where
is the centripetal acceleration given by:
(3)
Being
the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding
:
(7)
(8)
Finally: