For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.
For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!
Answer:
ε = 6.617 V
Explanation:
We are given;
Number of turns; N = 40 turns
Diameter;D = 18cm = 0.18m
magnetic field; B = 0.65 T
Time;t = 0.1 s
The formula for the induced electric field(E.M.F) is given by;
ε = |-NAB/t|
A is area
ε is induced electric field
While N,B and t remain as earlier described.
Area = π(d²/4) = π(0.18²/4) = 0.02545
Thus;
ε = |-40 × 0.02545 × 0.65/0.1|
ε = 6.617 V
(we ignore the negative sign because we have to take the absolute value)
Answer:
<h3>JAWAB SECEPATNYA pliss</h3><h3 /><h3>Anda memiliki rangkaian paralel 10 volt, dengan 2 resistor di atasnya. Berapakah tegangan pada</h3><h3>resistor pertama? Di seberang kedua?</h3><h3 /><h3>(saya akan menandai tercerdas tolong bantu)</h3>
Explanation:
Hukum Ohm
= tegangan
= kuat arus
= ketahanan
Kalau kamu mau mencari tegangan listrik, kamu gunakan rumus V = I.R. Kalau ternyata kamu perlu mencari kuat arus listrik, maka gunakan rumus I = V/R. Nah, kalau yang kamu cari adalah hambatan listrik, maka gunakan rumus R = V/I.
To determine the diameter of the earth in metres first multiply the original value by 2.
6378 X 2 = 12 756 km.
Then convert km - m
1 km = 1000 m
12 756 km = ? m
12 756 • 1000 = 12 756 000 = 12 756 000 m or 1.2756 X 10 ^ 7 m
The final solution for the diameter is 1.2756 X 10 ^ 7 m.
Answer:
hyoid bone
Explanation:
Woodpeckers have a special bone that acts like a seat-belt for its skull. It's called the hyoid bone, and it wraps all the way around a woodpecker's skull. Every time the bird pecks, the hyoid acts like a seat-belt for the bird's skull and the delicate brain it protects.