I don't know this article, but I do know some major changes: first, the change from the plum pudding model (no nucleus, just electrons) to the gold foil experiment, which had Rutherford shoot alpha particles at a sheet of gold only to find them rebounding, proving the existence of a positively charged mass, i.e a nucleus, in the atom. However, this changed again when Bohr realized that the negatively charged electrons should be attracted to the positively charged center, so that there must be something else inside the nucleus.
Answer:
seneca
past papers
take notes from videos
Explanation:
very good website, asks questions about the subject correct for your exam board and gives correct answers and explanations
exam papers always help
Omg that is that ( but I do not know this
Answer:
An elementary particle can be one of two groups: a fermion or a boson. Fermions are the building blocks of matter and have mass, while bosons behave as force carriers for fermion interactions and some of them have no mass. The Standard Model is the most accepted way to explain how particles behave, and the forces that affect them. According to this model, the elementary particles are further grouped into quarks, leptons, and gauge bosons, with the Higgs boson having a special status as a non-gauge boson.