Justin is most likely walking in a grassland biome .
Answer:
MoClBr₂
Explanation:
First we calculate the mass of bromine in the compound:
- 300.00 g - (82.46224 g + 45.741 g) = 171.79676 g
Then we<u> calculate the number of moles of each element</u>, using their <em>respective molar masses</em>:
- 82.46224 g Mo ÷ 95.95 g/mol = 0.9594 mol Mo
- 45.741 g Cl ÷ 35.45 g/mol = 1.290 mol Cl
- 171.79676 g Br ÷79.9 g/mol = 2.150 mol Br
Now we <u>divide those numbers of moles by the lowest number among them</u>:
- 0.9594 mol Mo / 0.9594 = 1
- 1.290 mol Cl / 0.9594 = 1.34 ≅ 1
- 2.150 mol Br / 0.9594 = 2.24 ≅ 2
Meaning the empirical formula is MoClBr₂.
Explanation:
Starting moles of ethanol acid = 0.020 mol
At the equilibrium 50 % of the ethanol acid molecules reacted
∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %
= 0.010 mol
Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol
Moles of the product gas formed are calculated as
0.010 mol CH3COOH * 1 mol / 2 mol CH3COOH
= 0.005 mol
Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol
That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol
Now Calculate the pressure :
0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas
P1/n1 = P2/n2
P2 = P1*n2 / n1
= 0.74 atm * 0.015 mol / 0.020 mol
= 0.555 atm