Answer:
A homopolar motor is a direct current electric motor with two magnetic poles, the conductors of which always cut unidirectional lines of magnetic flux by rotating a conductor around a fixed axis so that the conductor is at right angles to a static magnetic field.
Explanation:
The time taken by the light reflected from sun to reach on earth will be 8.4 minutes.
To find the answer, we need to know about the distance travelled by light.
<h3>How to find the time taken by the light reflected from sun to reach on earth?</h3>
- So, in order to solve this problem, we must first know how far the moon is from Earth and how far the Sun is from the moon.
- These distances are given as 3.8×10^5 km (Earth-Moon) and 1.5×10^8 km (Sun- Earth).
- Since the Moon and Sun are on opposite sides of Earth during a full moon, the light's distance traveled equals,

- As we know that light travels at a speed of 300,000 km per second. then, the time taken by the light reflected from sun to reach on earth will be,

Thus, the time it takes for the light from the Sun to reach Earth and be recognized as 8.4 minutes.
Learn more about distance here:
brainly.com/question/11495758
#SPJ4
Answer:
Kinetic energy is 1425.11 J.
Explanation:
Given:
Mass of the wrench is, 
Height of fall is, 
Force of resistance is, 
Now, the total energy at the top is equal to the potential energy of the wrench at the top since the kinetic energy at the top is 0.
Now, potential energy at the top is given as:

Now, the potential energy at the top is converted to kinetic energy at the bottom and some energy is wasted in overcoming the resistance force by air.
Potential Energy = Kinetic energy + Energy to overcome resistance.
⇒ Kinetic energy = Potential Energy - Energy to overcome resistance.
Energy to overcome resistance force is the work done by the wrench against the resistance force and is given as:

Therefore, Kinetic energy at the bottom is given as:

Hence, the kinetic energy of the wrench be when it hits the water is 1425.11 J.
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.