Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg
Answer:
social cognitive theory
Explanation:
The social-cognitive perspective on personality is a theory that stress out cognitive processes, such as thinking and judging, in the development of personality. These cognitive processes contribute to learned behaviors that are central to one’s personality, it helps shapes a person and who they are.
Yes. A glacier is nothing more than a huge mineral flowing downhill.
Before the launch, the momentum of the (spacecraft + asteroid) was zero. So after the launch, the momentum of the (spacecraft + asteroid) has to be zero.
Momentum = (mass) x (velocity)
Momentum after the launch:
Spacecraft: (1,000 kg) x (250 m/s) = 250,000 kg-m/s
Asteroid: (mass) x (-25 m/s)
Their sum: 250,000 - 25(mass) .
Their sum must be zero, so 250,000 kg-m/s = (25 m/s) x (mass)
Divide each side by 25 : 10,000 kg-m/s = (1 m/s) x (mass)
Divide each side by (1 m/s) : 10,000 kg = mass
Answer:
density describes how much space an object or substance takes up (its volume) in relation to the amount of matter in that object or substance (its
mass). In maths and physics density is calculated as mass defined as mass divided by volume (Density = Mass ÷ Volume).